Tree/Customization guide

From Code Synthesis Wiki

< TreeRevision as of 08:49, 27 September 2006; view current revision
←Older revision | Newer revision→
Jump to: navigation, search

Note: this guide is a work in progress

Introduction

XSD provides you with mechanisms to customize the generated type system for the C++/Tree mapping. Common customization examples include:

  • using a different type for one of the built-in types (e.g., boost::gregorian::date from the Boost libraries for xsd:date)
  • adding a member function or data member to one or more generated types (e.g., add a print() function)
  • adding virtual functions to the base type of a type hierarchy and implementing them in the derived types (e.g., when using xsi:type dynamic typing and/or substitution groups)

XSD provided two command-line options, --custom-type and --custom-type-regex, that allow you to specify which types should be customized and how these types will be customized. The format for the --custom-type option is as follows:

 --custom-type name[=type[/base]]

The name component specifies the name of a type as defined in XML Schema. The name is unqualified since the target namespace of the schema being compiled is always assumed. The optional type component is a C++ type name that should be used instead of the generated type. If type is empty or not specified then the same name as the XML Schema type name is assumed. Finally, if the optional base component is provided then the standard mapping for the type is still generated but with this name. A few examples should make all this clear. Suppose we have the following schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema" 
        targetNamespace="http://www.example.com/hello">

  <complexType name="names">
    <sequence>
      <element name="name" type="string"/>
    </sequence>
  </complexType>

</schema>

Compiling this schema without specifying any options will result in the following C++ code:

namespace hello
{
  class names
  {
    ...
  };
}

Now we compile the above schema with the following option:

--custom-type names

The generated code will look like this:

namespace hello
{
  class names;
}

The compiler simply generated a forward declaration for names expecting you to provide the implementation. Let's say we want to use the my_names type instead. Then we can use the following option:

--custom-type names=my_names

The generated code will look like this:

namespace hello
{
  typedef my_names names;
}

What if we wanted to use class template names which is defined in namespace templates? Then we could use the following option:

--custom-type names=::templates::names<char>

The resulting code would look like this:

namespace hello
{
  typedef ::templates::names<char> names;
}

Now what if all we want to do is add a simple function to the names type? It would be too much work if we had to implement all the code that gets generated ourselves. Fortunately we don't have to. We can ask the compiler to generate the standard mapping with a different name and then inherit our custom type from the generated one:

--custom-type names=/names_base

This will result in the following C++ code:

namespace hello
{
  class names_base;
  class names;

  class names_base
  {
    ...
  };
}

In our implementation of the names class we can use names_base as the base. Here is another example:

--custom-type names=::templates::names<names_base>/names_base

This results in the following C++ code being generated:

namespace hello
{
  class names_base;
  typedef ::templates::names<names_base> names;

  class names_base
  {
    ...
  };
}

While this example may seem a bit far-fetched, this technique is actually used in some special cases as will be shown later.

The --custom-type-regex option is similar to --custom-type except it allows you to use regular expressions to match several names at once. For more information on this option refer to the XSD command line interface documentation (man pages).

Customizing the generated type - the simple case

Let's now look at the complete set of steps necessary to do a simple customization. All the code in this section is taken from the contacts example which can be found in the examples/cxx/tree/custom/contacts directory of the XSD distribution. Our schema looks like this:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns:cts="http://www.codesynthesis.com/contacts"
            targetNamespace="http://www.codesynthesis.com/contacts">

  <xsd:complexType name="contact">
    <xsd:sequence>
      <xsd:element name="name" type="xsd:string"/>
      <xsd:element name="email" type="xsd:string"/>
      <xsd:element name="phone" type="xsd:string"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="catalog">
    <xsd:sequence>
      <xsd:element name="contact" type="cts:contact" maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:element name="catalog" type="cts:catalog"/>

</xsd:schema>

We would like to add the print() function to the generated contact type. The first step is to compile our schema. We will use the following XSD options (explained below):

--custom-type contact=/contact_base 
--hxx-epilogue '#include "contacts-custom.hxx"'

The first option tells the compiler that we are providing our own implemntation for the contact type as well instructs it to generate the standard mapping with the name contact_base. We will use the generated contact_base class as a base for our implementation of contact. The second option instructs the compiler to add #include "contacts-custom.hxx" at the end of the generated header file. The contacts-custom.hxx file is where we will define our own contact class:

// contacts-custom.hxx

#include <iosfwd> // std::ostream

namespace contacts
{
  class contact: public contact_base
  {
    // The following constructor signatures are copied from
    // contact_base except for the copy constructor and the
    // _clone function where we had to change the type from
    // contact_base to contact.
    //
  public:
    contact (const name::type&,
             const email::type&,
             const phone::type&);

    contact (const xercesc::DOMElement&,
             xml_schema::flags = 0,
             xml_schema::type* = 0);

    contact (const contact&,
             xml_schema::flags = 0,
             xml_schema::type* = 0);

    virtual contact*
    _clone (xml_schema::flags = 0,
            xml_schema::type* = 0) const;

    // Our customizations.
    //
  public:
    void
    print (std::ostream&) const;
  };
}

The implementation of our contact class is placed into the contacts-custom.cxx file:

// contacts-custom.cxx

#include <ostream>
#include "contacts.hxx"

namespace contacts
{
  contact::
  contact (const name::type& n,
           const email::type& e,
           const phone::type& p)
      : contact_base (n, e, p)
  {
  }

  contact::
  contact (const xercesc::DOMElement& e,
           xml_schema::flags f,
           xml_schema::type* container)
      : contact_base (e, f, container)
  {
  }

  contact::
  contact (const contact& c,
           xml_schema::flags f,
           xml_schema::type* container)
      : contact_base (c, f, container)
  {
  }

  contact* contact::
  _clone (xml_schema::flags f,
          xml_schema::type* container) const
  {
    return new contact (*this, f, container);
  }

  void contact::
  print (std::ostream& os) const
  {
    os << name () << " e| " << email () << " t| " << phone () << std::endl;
  }
}

There are two things worth noting about this implementation. First, note that we include contacts.hxx instead of contacts-custom.hxx. This is important since contacts-custom.hxx is not self-sufficient; for example, it refernces but does not define contact_base. Second, note that all constructors are implemented by forwarding to the corresponding contact_base constructors.

And that's pretty much it. The only piece left is some client code that uses our customizations:

// driver.cxx

#include <memory>   // std::auto_ptr
#include <iostream>

#include "contacts.hxx"

using std::cerr;
using std::endl;

int
main (int argc, char* argv[])
{
  using namespace contacts;

  std::auto_ptr<catalog> c (catalog_ (argv[1]));

  for (catalog::contact::const_iterator i (c->contact ().begin ());
       i != c->contact ().end (); ++i)
  {
    i->print (cerr);
  }
}

At this stage you may be wondering why all this works. After all the contact class is used in the generated code even though it hasn't been defined - its definition is only available at the end of the generated header file (remember the --hxx-prologue option). The reason why this works has two parts to it:

  • The compiler generates forward declaration for types that we customize
  • The C++/Tree mapping is designed in such a way that a forward declaration is sufficient for all uses of a type in a header file except for inheritance

As a result, the customization technique outlined in this section works as long as you are not customizing a type that is also a base for some other type in the same schema file. The alternative approach that works even in the case of inheritance is described in the next section.

Customizing the generated type - the complex case

This section presents the complex case where the types being customized are inherited from in the same schema. All the code in this section is taken from the taxonomy example which can be found in the examples/cxx/tree/custom/taxonomy directory of the XSD distribution. The schema for this example looks as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns:ppl="http://www.codesynthesis.com/people"
            targetNamespace="http://www.codesynthesis.com/people">

  <xsd:complexType name="person">
    <xsd:sequence>
      <xsd:element name="name" type="xsd:string"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="superman">
    <xsd:complexContent>
      <xsd:extension base="ppl:person">
        <xsd:attribute name="can-fly" type="xsd:boolean" use="required"/>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <xsd:complexType name="batman">
    <xsd:complexContent>
      <xsd:extension base="ppl:superman">
        <xsd:attribute name="wing-span" type="xsd:unsignedInt" use="required"/>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <xsd:complexType name="catalog">
    <xsd:sequence>
      <xsd:element name="person" type="ppl:person" maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:element name="catalog" type="ppl:catalog"/>

</xsd:schema>

We would like to add the virtual print() function to the base of the hierarchy (the person type) and override it in each derived type (superman and batman). The first step is to compile our schema. We will use the following XSD options (explained below):

--generate-polymorphic
--custom-type "person=person_impl<person_base>/person_base"
--custom-type "superman=superman_impl<superman_base>/superman_base"
--custom-type "batman=batman_impl<batman_base>/batman_base"
--generate-forward  
--fwd-prologue '#include "people-custom-fwd.hxx"'
--hxx-prologue '#include "people-custom.hxx"'

We use the --generate-polymorphic option because our instance documents will be using the xsi:type-based dynamic typing.

The set of the --custom-type options should look familiar by now. They tell the compiler that we are customizing the person, superman, and batman types, that the *_impl<*_base> class template instantiations should be used instead, and that the original mapping should still be generated but renamed to *_base.

The --generate-forward option triggers generation of the people-fwd.hxx forward declaration file. The content of the people-fwd.hxx file will look along these lines:

// people-fwd.hxx - automatically generated
namespace xml_schema
{
   ... // Declarations for the XML Schema built-in types.
}

namespace people
{
  class person_base;
  typedef person_impl<person_base> person;

  class superman_base;
  typedef superman_impl<superman_base> superman;

  class batman_base;
  typedef batman_impl<batman_base> batman;

  class catalog;
}

This header file won't compile unless we supply the definitions - or at least forward declarations - of the person_impl, superman_impl, and batman_impl class templates. The --fwd-prologue option does exactly that: it adds the #include "people-custom-fwd.hxx" line at the beginning of the generated people-fwd.hxx. The content of the people-custom-fwd.hxx file is straightforward:

// people-custom-fwd.hxx

namespace people
{
  template <typename base>
  class person_impl;

  template <typename base>
  class superman_impl;

  template <typename base>
  class batman_impl;
}

Unlike the simple case, when types being customized are inherited from in the same schema file, we cannot include definitions of custom types at the end of the genearted header file. That is why we are using the </code>--hxx-prologue</code> option instead of --hxx-epilogue to include people-custom.hxx. Since the custom type definitions are included before the generated base types (person_base, superman_base, and batman_base) are defined we have to use class templates instead of plain classes as we did in the previous section. The content of people-custom.hxx is presented below:

// people-custom.hxx

#include <iosfwd> // std::ostream
#include "people-fwd.hxx"

namespace people
{
  //
  //
  template <typename base>
  class person_impl: public base
  {
  public:
    person_impl (const xml_schema::string& name);

    person_impl (const xercesc::DOMElement&,
                 xml_schema::flags = 0,
                 xml_schema::type* = 0);

    person_impl (const person_impl&,
                 xml_schema::flags = 0,
                 xml_schema::type* = 0);

    virtual person_impl*
    _clone (xml_schema::flags = 0,
            xml_schema::type* = 0) const;
 
  public:
    virtual void
    print (std::ostream&) const;
  };

  template <typename base>
  class superman_impl: public base
  {
  public:
    superman_impl (const xml_schema::string& name, bool can_fly);

    superman_impl (const xercesc::DOMElement&,
                   xml_schema::flags = 0,
                   xml_schema::type* = 0);

    superman_impl (const superman_impl&,
                   xml_schema::flags = 0,
                   xml_schema::type* = 0);

    virtual superman_impl*
    _clone (xml_schema::flags = 0,
            xml_schema::type* = 0) const;

  public:
    virtual void
    print (std::ostream&) const;
  };

  template <typename base>
  class batman_impl: public base
  {
  public:
    batman_impl (const xml_schema::string& name,
                 bool can_fly,
                 unsigned int wing_span);

    batman_impl (const xercesc::DOMElement&,
                 xml_schema::flags = 0,
                 xml_schema::type* = 0);

    batman_impl (const batman_impl&,
                 xml_schema::flags = 0,
                 xml_schema::type* = 0);

    virtual batman_impl*
    _clone (xml_schema::flags = 0,
            xml_schema::type* = 0) const;

  public:
    virtual void
    print (std::ostream&) const;
  };
}

Definitions of custom types look very similar to the one we saw in the previous section. The only two differences are the use of templates with the base class as a parameter and the inclusion of the people-fwd.hxx file. The latter allows us to refer to the generated as well as XML Schema built-in types, e.g., xml_schema::string.

The implementation of our class templates is placed into the people-custom.cxx file:

// people-custom.cxx

#include <ostream>
#include "people.hxx"

namespace people
{
  // person_impl
  //
  template <typename base>
  person_impl<base>::
  person_impl (const xml_schema::string& name)
      : base (name)
  {
  }

  template <typename base>
  person_impl<base>::
  person_impl (const xercesc::DOMElement& e,
               xml_schema::flags f,
               xml_schema::type* container)
      : base (e, f, container)
  {
  }

  template <typename base>
  person_impl<base>::
  person_impl (const person_impl& p,
               xml_schema::flags f,
               xml_schema::type* container)
      : base (p, f, container)
  {
  }

  template <typename base>
  person_impl<base>* person_impl<base>::
  _clone (xml_schema::flags f, xml_schema::type* container) const
  {
    return new person_impl (*this, f, container);
  }

  template <typename base>
  void person_impl<base>::
  print (std::ostream& os) const
  {
    os << this->name () << std::endl;
  }

  // Explicitly instantiate person_impl class template for person_base.
  //
  template class person_impl<person_base>;


  // superman_impl
  //
  template <typename base>
  superman_impl<base>::
  superman_impl (const xml_schema::string& name, bool can_fly)
      : base (name, can_fly)
  {
  }

  template <typename base>
  superman_impl<base>::
  superman_impl (const xercesc::DOMElement& e,
                 xml_schema::flags f,
                 xml_schema::type* container)
      : base (e, f, container)
  {
  }

  template <typename base>
  superman_impl<base>::
  superman_impl (const superman_impl& s,
                 xml_schema::flags f,
                 xml_schema::type* container)
      : base (s, f, container)
  {
  }

  template <typename base>
  superman_impl<base>* superman_impl<base>::
  _clone (xml_schema::flags f,
          xml_schema::type* container) const
  {
    return new superman_impl (*this, f, container);
  }

  template <typename base>
  void superman_impl<base>::
  print (std::ostream& os) const
  {
    if (this->can_fly ())
      os << "Flying superman ";
    else
      os << "Superman ";

    os << this->name () << std::endl;
  }

  // Explicitly instantiate superman_impl class template for superman_base.
  //
  template class superman_impl<superman_base>;


  // batman_impl
  //
  template <typename base>
  batman_impl<base>::
  batman_impl (const xml_schema::string& name,
               bool can_fly,
               unsigned int wing_span)
      : base (name, can_fly, wing_span)
  {
  }

  template <typename base>
  batman_impl<base>::
  batman_impl (const xercesc::DOMElement& e,
               xml_schema::flags f,
               xml_schema::type* container)
      : base (e, f, container)
  {
  }

  template <typename base>
  batman_impl<base>::
  batman_impl (const batman_impl& s,
               xml_schema::flags f,
               xml_schema::type* container)
      : base (s, f, container)
  {
  }

  template <typename base>
  batman_impl<base>* batman_impl<base>::
  _clone (xml_schema::flags f,
          xml_schema::type* container) const
  {
    return new batman_impl (*this, f, container);
  }

  template <typename base>
  void batman_impl<base>::
  print (std::ostream& os) const
  {
    os << "Batman " << this->name () << " with " <<
      this->wing_span () << "m wing span" << std::endl;
  }

  // Explicitly instantiate batman_impl class template for batman_base.
  //
  template class batman_impl<batman_base>;
}

Again, the implementation should look familiar. The two differences compared to the previous section that are worth mentioning are explicit template instantiations and qualification of member functions with this->. The explicit template instantiations is a nice optimization that allows us to keep the implementation details in the source file (instead of putting them into the header) and prevent object code bloat that could result from instantiating our member functions in several translation units. This technique works well in our case because for each class template we know the only template argument it will ever be instantiated with (i.e., generated base class).

The qualification of member functions (name, can_fly, wing_span) with this-> is necessary because they are declared in the base type and do not have any arguments that depend on the template argument. For more information on this aspec of C++ templates see your favorite C++ book (e.g., "C++ Templates" by Vandevoorde and Josuttis).

Personal tools